Leveraging Parallelism Assays to Validate the Accurate Detection of Endogenous Levels of Biomarkers in Ligand-Binding Assays

Introduction

The classical purpose of the parallelism assay is to demonstrate that the sampledilution response curve aligns with the standard-calibrator response curve. This alignment confirms that the calibrator material is suitable for measuring the endogenous analyte. Beyond its essential role, parallelism informs several other crucial assay parameters for biomarker ligand binding assays:

- Minimum Required Dilution (MRD): Parallelism aids in establishing the dilution level at which accurate measurements of endogenous biomarkers can be made.
- Determining the dilution factors to eliminate the matrix effect.
- Precise quantification of endogenous biomarker levels across various dilution factors.
- Lower Limit of Quantification (LLOQ): Parallelism informs the determination of the lowest concentration of the endogenous biomarkers that can be reliably quantified.

In this practical exploration of the parallelism assay, various unique biomarkers and matrices were meticulously evaluated. The parallelism assay was utilized to determine the endogenous levels of the biomarkers.

Materials & Methods

- The accuracy, precision, and parallelism assays were conducted using the sandwich immunoassay method. The capture antibody for the analytes is pre-coated onto 96-well plates and analytes present in the standards, quality controls, and test samples will bind to the capture antibody. After washing away the unbound material, a detection antibody (Sulfo-Tag conjugates) specific to these analytes is added to the wells and incubated for immunocomplex formation. After washing the plates, the read buffer is added to the wells, and electrochemiluminescence signal is read on a Meso QuickPlex SQ120mm.
- Three or four lots of human matrix with varying endogenous levels of biomarkers were tested. Initially, the samples were assessed undiluted Subsequently, they underwent a series of dilutions to reach the Lower Limit of Quantification (LLOQ) level.
- When determining the concentration of the endogenous biomarkers, select the Minimum Required Dilution (MRD) that, when used for back-calculation and recovery rate calculation, exhibits the best overall recovery rate across all tested samples.
- The % recovery is calculated by dividing the measured actual concentration by the determined concentration through the MRD and then multiplying by 100.
- meaured concentration *100• % Recovery = $\frac{m}{dat}$ determined concentration
- The percentage bias is calculated by subtracting the determined concentration obtained through MRD from the measured actual concentration, and this result is then divided by the determined concentration and multiplied by 100. The % bias should be within the $\pm 20\%$.

neaured concentration-determined concentration • % bias = determined concentration

*The concentration reaches the LLOQ

Shuangling Chen^{*1}, Jessica Arroyo¹

1 Worldwide Clinical Trials, 4509 Freidrich Lane, Building 2, Suite 200, Austin, TX 78744, USA *Author for correspondence: shuangling.chen@worldwide.com

0 1

0.3

0.6 4

1.2 16

1.51 32

1.81 64

0.9

%Bias of Dilution Factor Adjusted Concentration versus Determined Concentration (Dilution Factor 8 Adjusted) Results

Assay for Kidney Injury Molecule -1 (KIM-1)

KIM-1 Concentration in 4 Human Urine After Dilution Factor Adjustment

			200(21141)	onnactory				
KIM-1	Nominal Conc.	Replicates per run	Run - 1		Run - 2		Run - 3	
			%CV	%Bias	%CV	%Bias	%CV	%Bias
JLOQ	20,000	6	2.11	-15.9	4.47	3.11	4.83	6.89
HQC	16,000	6	2.64	-13.0	3.88	1.14	1.58	5.77
MQC	623	6	2.06	-14.1	4.84	-5.06	2.38	3.47
LQC	58.5	6	2.92	-17.3	3.92	-6.51	2.24	2.33
100	10.5	6	5 88	18.2	2.03	7 82	4.01	2 35

Table 1 Assay Accuracy and Precision for KIM-I

	Individual -1		Individual -2		Indiv	idual -3	Individual -4		
n	Average %	Con. No DF	Average %	Con. No DF	Average%	Con. No DF	Average %	Con. No DF	
	Recovery	Adjusted	Recovery	Adjusted	Recovery	Adjusted	Recovery	Adjusted	
		(pg/mL)		(pg/mL)		(pg/mL)		(pg/mL)	
	122	963	123	748	101	803	127	1238	
	117	463	110	334	118	466	113	549	
	104	205	101	153	106	210	105	256	
	100	98.9	100	76.0	100	99.1	100	121	
	106	52.2	97.9	37.2	99.0	49.0	99.8	60.7	
	98.9	24.4	95.1	18.0	101	25.0	99.5	30.2	
	<mark>100</mark>	<mark>12.3</mark>	<mark>95.3</mark>	<mark>9.06</mark>	<mark>96.3</mark>	<mark>11.9</mark>	<mark>100</mark>	<mark>15.2</mark>	

Table 2 Parallelism % Recovery for KIM-1; DF: Dilution Factor # The concentration reaches the LLOO

%Bias of Dilution Factor Adjusted Concentration

IL-16	Nominal Conc.	Replicates per run	Run - 1		Run	- 2	Run - 3	
		Î	%CV	%Bias	%CV	%Bias	%CV	%Bias
ULOQ	1,658	6	6.24	2.74	2.47	-1.48	2.31	2.04
HQC	1,327	6	3.82	5.89	3.90	3.74	2.43	2.66
MQC	82.8	6	4.08	-1.15	2.54	-4.88	1.70	-6.37
LQC	12.4	6	3.53	2.42	2.76	-5.71	3.13	-5.43
LLOQ	4.13	6	2.25	2.23	3.70	-5.16	5.72	-0.75

Table 3 Assay Accuracy and Precision for IL-16

ution	Individual -1		Indiv	idual -2	Individual -3		
	Average %Recovery	Con. No DF Adjusted	Average %	Con. No DF Adjusted	Average %	Con. No DF Adjusted	
		(pg/mL)	Recovery	(pg/mL)	Recovery	(pg/mL)	
	44.8	459	59.7	1956	56.4	698	
	102	520	96.0	1573	102	632	
	100	256	100	819	100	310	
	90.7	116	95.0	389	95.4	148	
	91.3	58.4	91.2	187	90.9	70.4	
	87.6	28.0	88.0	90.1	93.4	36.2	
	90.4	14.4	86.3	44.4	90.8	17.4	

Table 4 Parallelism % Recovery for IL-16; DF: Dilution Factor Samples were not diluted to the LLOQ level

May 6-10, 2024, San Antonio River Walk

Results

Total Tau	Nominal Conc.	Replicates	Ru	Run - 1		Run - 2		Run - 3	
		per run	%CV	%Bias	%CV	%Bias	%CV	%Bias	
ULOQ	2,500	6	3.70	-3.20	5.90	-8.80	2.70	-2.40	
HQC	2,000	6	2.80	1.00	2.90	-4.50	1.70	2.00	
MQC	400	6	2.50	1.50	2.00	-5.80	2.90	2.50	
LQC	7.50	6	3.80	-8.10	3.40	-7.50	2.50	-2.10	
LLOQ	2.50	6	4.00	-5.20	8.10	-1.60	2.40	-9.20	

Table 5 Assay Accuracy and Precision for Total Tau

*The concentration reaches the LLOQ

Fold	Individual -1		Indiv	idual -2	Individual -3		
Dilution	Average	Average Con. No DF		Average %Recovery Con. No DF Adjusted		Con. No DF	
	%Recovery	Adjusted (pg/mL)		(pg/mL)		Adjusted (pg/mL)	
1	100.0	8.10	100	10.9	100	10.7	
2	102	4.14	100	5.45	101	5.40	
4 #	<mark>98.8</mark>	<mark>2.00</mark>	<mark>96.3</mark>	<mark>2.63</mark>	<mark>98.1</mark>	<mark>2.63</mark>	
8	90.5	0.92	83.0	1.13	80.6	1.08	
16	81.9	0.41	72.7	0.50	78.0	0.52	

Table 6 Parallelism % Recovery for Total Tau; DF: Dilution Factor

The concentration reaches the LLOQ

Assay for VEGF-A

VEGF-A	F-A Nominal Conc.	Nominal Replicate		Run - 1		Run - 2		Run - 3	
		per run	%CV	%Bias	%CV	%Bias	%CV	%Bias	
ULOQ	810	6	2.32	7.56	2.45	-3.48	1.57	3.28	
HQC	648	6	1.95	5.21	2.73	-4.84	3.02	6.40	
MQC	40.4	6	3.26	-7.17	2.08	-18.97	1.57	-7.21	
LQC	6.06	6	4.05	-1.36	5.16	-16.35	3.99	-5.64	
LLOQ	2.02	6	3.29	10.76	4.92	-10.94	3.52	0.61	

Table 7 Assay Accuracy and Precision for VEGF-A

Fold Dilution	Individual -1		Indivi	dual -2	Individual -3		
	Average %Recovery	Con. No DF Adjusted	Average %Recovery	Con. No DF Adjusted	Average %Recovery	Con. No DF Adjus	
		(pg/mL)		(pg/mL)		(pg/mL)	
1	80.7	17.2	80.7	20.6	74.5	15.7	
2	93.5	9.95	94.7	12.1	95.5	10.0	
4	100	5.32	100	6.39	100	5.25	
8 #	<mark>106</mark>	<mark>2.83</mark>	<mark>108</mark>	<mark>3.44</mark>	<mark>114</mark>	<mark>2.99</mark>	
16	116	1.54	116	1.85	125	1.64	
32	127	0.85	127	1.02	132	0.87	
64	143	0.48	149	0.60	157	0.52	

Table 8 Parallelism % Recovery for VEGF-A; DF: Dilution Factor # The concentration is around the LLOQ

Results

- For endogenous **KIM-1**, the signal decreased proportionally with dilution from dilution factor 2 to the LLOQ level. Dilution factor 8 was selected as the MRD (Minimum Required Dilution) to determine the concentration.
- For endogenous IL-16, the concentration decreased proportionally with dilution from dilution factor 2. Dilution factor 4 was selected as MRD to determine the concentration. The samples were diluted to the 2 times of LLOQ level, not to the LLOQ level due to material limitation.
- For endogenous **total Tau**, the concentration decreased proportionally with dilution from dilution factor 1 to the LLOQ level. Dilution factor 1 was selected as the MRD to determine the concentration.
- For endogenous **VEGF-A**, the concentration decreased proportionally with dilution from dilution factor 2 to the LLOQ level. Dilution factor 4 was selected as the MRD to determine the concentration
- For endogenous KIM-1, total Tau, and VEGF-A, when diluted to the **LLOQ** (Lower Limit of Quantification) level, the measured concentration, adjusted by the dilution factor, **matched** the determined concentration across the multiple samples (%bias was within $\pm 20\%$).
- The measured concentrations of KIM-1, IL-16, total Tau, and VEGF-A adjusted by the dilution factor, consistently matched the determined concentrations across multiple samples tested at varying dilution factors (with % bias within $\pm 20\%$). This confirmation validates that the determined concentrations represent the endogenous levels of these biomarkers.

Conclusion

- Parallelism establishes the MRD dilution level at which accurate measurements of endogenous biomarkers can be made.
- Parallelism assay can confirm the **precise quantification** of endogenous biomarker levels across various dilution factors.
- Parallelism can be utilized in determining the dilution factors to eliminate the matrix effect
- Parallelism informs the determination of the lowest concentration of the endogenous biomarkers that can be reliably quantified.
- Parallelism should be evaluated in a ligand-binding assay when samples are available at concentrations 4-8 times than the Lower Limit of Quantification (LLOQ) or higher.

References

- Tu, J., & Bennett, P. (2017). Parallelism experiments to evaluate matrix effects, selectivity and sensitivity in ligand-binding assay method development: pros and cons. Bioanalysis, 9(14), 1107–1122.
- Nelson, R. (2016). TT-61: Non-parallelism in biomarker assays. Presented on behalf of EBF TT-61 at the EBF Open Symposium, November 2016, Barcelona, Spain

Contact

4509 Freidrich Lane, Building 2, Austin, TX 78744, USA. https://www.worldwide.com/

Worldwide Clinical Trials