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Constructing Composites to  
Optimise Cognitive Outcomes   
The relative insensitivity of traditional cognitive outcome measures 
to describe the more subtle and selective cognitive impairment 
associated with neurologic disorders such as mild cognitive 
impairment/prodromal Alzheimer’s disease, and psychiatric 
disorders such as depression, schizophrenia and ADHD, as well 
as track treatment-related changes, has resulted in a recent boon 
in cognitive composite measures. Composites such as these are 
typically created in an effort to reduce Type 1 error by reducing 
the number of outcome measures to a more manageable level, and 
ultimately to improve signal detection by being more sensitive 
to disease state and treatment effects while reducing sample 
size. Composite endpoints characteristically have several other 
advantages, including being more highly correlated with putative 
biomarkers such as neuroimaging and CSF measures, and being 
better at predicting disease progression. Only rarely are composite 
measures employed to guarantee that appropriate cognitive 
domains of interest are sampled in a practical and efficient manner, 
ensuring adequate psychometric properties (such as sufficient 
reliability and avoiding celling/floor effects); or employed as a 
method to characterise the cognitive profile of a drug in an a priori 
fashion that is associated with a disease state longitudinally and/
or with treatment intervention. While it is relatively easy for many 
clinical triallists to acknowledge that specific cognitive domains 
are more likely to be associated with particular CNS conditions,1 
few appreciate that even widely recognised cognitive enhancers 
typically affect multiple cognitive domains: preferentially improving 
some domains while possibly causing impairments in others, even 
against a backdrop of improved overall cognitive function. One 
method for ensuring that this variability is adequately captured 
is through the proficient construction and analysis of cognitive 
composite measures.  

 
Although many researchers use the terms composite score and 

summary score interchangeably, composites differ from summary 
scores in that composite typically represent small sets of data 
points that are highly related to one another, both conceptually 
and – importantly – statistically in terms of collinearity. As such, 
reducing several cognitive outcome measures to a single composite 
essentially reduces the amount of information representing a 
single underlying construct. Although there can be room for 
improvisation, composites are typically based on well-established 
methodologies and are calculated in a very fixed and consistent 
manner using standard analytic tools. On the other hand, summary 
scores often combine many different types of measures into a 
single unified score, even though these measures may be related 
to various outcomes and several underlying constructs that are 
often unrelated. This flexibility permits the combination of data 
across several theoretical constructs to gain a wider appreciation 
of variable domains.  

Although there are advantages to using both summary 
and composites scores as noted above, there are also relevant 
disadvantages including the fact that these derived scores may 
mask important differences apparent in individual component 
scores. Even with well-constructed composites, it is highly unlikely 
that all component measures will be equally reliable, have equal 
variances, be equally inter-correlated and be equally correlated 
with the underlying construct which the composite is attempting 

to measure.2 In order to remedy this issue, many researchers have 
chosen to weight individual components of the composite score.  

 
Weighting Composites
Although the weighting process can be very formal or quite 
arbitrary, the goal of differential weighting of composite scores 
should always be to improve the reliability of the composite and 
provide more valid and useful composites than obtained when 
component measures are simply summed and averaged, with all 
components having equal weight. The latter type of weighting is 
often referred to as using natural weights, in which raw scores are 
simply summed or averaged to form a composite measure where 
differences in the variances of component variables and differences 
in their inter-correlations determine the weights. On the other 
hand a priori weights can be assigned on the basis of judgments or 
ratings, or based on more empirical analytic methods. For example, 
weights may be chosen to maximise certain internal criteria such as 
the reliability of the composite measure. In this case, more weight 
is given to components with higher reliability and less weight to 
those with lower reliability. However, one of the most common 
methods is to weight components is by maximising the validity of 
the composite in relation to a pre-specified external criterion using 
multiple regression techniques, which includes canonical variate 
analysis, principal component analysis, maximum reliability and 
canonical factor analysis.

Multiple regression methods provide a set of weights optimal 
for minimising the error of prediction for the group on which the 
weights are derived under certain assumptions of normality and 
linearity. In the standard multiple regression equation predictors 
maximise the correlation between the composite score and the 
actual criterion, and can be used to derive the actual weights. The 
linear combination of the component scores can also be used to 
derive composite scores that maximise the correlation between the 
external criterion and the composite.3 Although it is relatively easy 
to calculate these weights, researchers caution that using multiple 
regression requires considerable thoughtfulness in interpretation 
as predictor weights are those which maximise the multiple 
correlation R, within the sample from which they were derived.4 
However, typically these weights are derived in one sample and 
then applied to another sample in a prospective manner, which 
has more often than not resulted in poorer performance of that 
composite measure on the new sample. One method to avoid this 
problem is simply to utilise the multiple regression methodology 
on each specific sample under investigation in a blinded manner 
by using screening or baseline before treatment intervention.  
This would guarantee that the weights would be fully applicable 
to the study sample and, with enough patients, these composites 
would likely generalise to other samples of similar patients from 
which they were derived. 

Current Cognitive Composites
Many cognitive composites are based on observational neuro-
psychological test data from measures that were originally intended 
for use in other populations. Alternatively, composites can be based 
on a theory of neuropsychological dysfunction specific to a disease 
state based on well accepted principles of neuropsychological 
function and localisation.1 
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Of course, these principles can change over time with increased 
understanding, but oftentimes the cognitive domains fall into 
one of several well-known categories including episodic memory, 
executive function, motor function and language. The actual 
cognitive test variables that comprise each of these domains have 
multiple outcome variables associated with them, and some of these 
outcome variables are better suited to one cognitive domain versus 
another. For example, although total delayed recall of a word list may 
conceptually best fit into a cognitive domain representing episodic 
memory, the number of intrusions or perseverative errors made on 
that task, and derived measures of signal detection may be better 
suited for inclusion into the executive function domain. Decisions 
regarding appropriate assignment such as this are subjective and 
based not only on the idiosyncratic group of tests employed but 
also on the attribution of these tests to a specific cognitive domain.  

For instance, the agreement regarding essential cognitive 
domains required to adequately assess the well accepted construct 
of Cognitive Impairment Associated with Schizophrenia (CIAS) 
came about only after a very prolonged process facilitated by 
the RAND corporation to drive consensus amongst numerous 
stakeholders including regulatory bodies, the NIH, an assortment of 
key opinion leaders from academia, and various industry leaders.5 
This herculean effort resulted in the cognitive battery called the 
Measurement and Treatment Research to Improve Cognition in 
Schizophrenia (MATRICS) battery which was designed to help 
facilitate a methodology for developing and registering potential 
nootropic agents in schizophrenic populations. Neuropsychological 
test expert vary appreciably regarding the assignment of any given 
outcome measure into a single cognitive domain, with many 
choosing instead to weight each outcome variable into several 
categories as most cognitive tests involve complex attention, 
psychomotor speed, and language minimally. Even test authors 
and testing companies have suggested alternate views on what 
exactly each outcome variable is intended to measure. In short, it 
is widely agreed that although cognitive tests are often reported 
to be sensitive to a single cognitive domain, their measurement 
always includes variance associated with other common cognitive 
and non-cognitive factors. Even the well vetted and agreed upon 
MATRICS cognitive battery continues to evolve from data acquired 
from various trials regarding its psychometric properties and 
clinical utility.

Unlike the mammoth MATRICS initiative, composite measures  
related to the cognitive domains associated with early AD (MCI, 
prodromal AD) and mild AD have been taken on in a less onerous 
fashion, with several individual pharma companies and public-
private partnerships leading the way. Some of these, such as the 
ADComs, TriAD and ProAD are based on a subset of measures 
typically given in later stages of illness such as the ADASCog, 
MMSE and CDR, while other composites are based on a prior group 
of standardised neuropsychological tests classically administered 
across a host of different patient populations. In the earlier example, 
researchers started with standard AD scales and selected items 
that were most relevant to earlier stage patients, choosing items 
that exhibited a large decline and low variability via a variety of 
techniques, such as item analyses, partial least squares regression 
and multiple correlations.  

One of the most notable novel composites is based on data 
obtained from the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) and applies psychometric methods to various cognitive tests 
utilised across approximately 800 subjects in a series of studies. 
Outcome measures related to many cognitive tests including 
the ADAS-Cog, the Rey Auditory Verbal Learning Test (RAVLT), 

Category Fluency, Trail Making, Clock Drawing, Digit Span and 
Logical Memory were available for analysis. Of note, ADNI authors 
reviewed the entire baseline ADNI neuropsychological battery 
to identify items which could be considered indicators of either 
executive function (EF) or memory (MEM), both known to be 
important in early AD, then refined item selection using an iterative 
process in which they constructed a model using confirmatory 
factor analysis, reviewed findings as a group, and then constructed 
a revised model.6,7 Specifically, a confirmatory factor analysis played 
an important role in composite development. In the case of the EF 
composite, the single factor model was not a good representation of 
the data and a bi-factor structure that included a secondary domain 
for correlations between category fluency items, and that included 
a methods factor for the clock drawing items, produced a better 
measure of model fit. The researchers utilised several statistical 
techniques in order to assess the fit of the model, including the 
confirmatory fit index (CFI), the Tucker Lewis Index (TLI) and the 
root mean squared error of approximation (RMSEA).  

Importantly, the team then compared ADNI-EF with individual 
component measures in 390 subjects with mild cognitive 
impairment (MCI) with respect to the composite’s ability to 
detect change over time; to predict conversion to dementia; to be 
correlated with MRI-derived measures of structures involved in 
frontal systems; and with cerebrospinal fluid (CSF) levels of amyloid 
β1–42, total tau, and phosphorylated tau. The ADNI-EF composite 
showed the greatest changes over time, followed closely by the 
component category fluency measure but notably the ADNI-EF 
composite required a 40% smaller sample size to detect change. The 
ADNI-EF composite was also the strongest predictor of conversion 
to AD and was the only measure significantly associated with all of 
the frontal regions on MRI. However, other measures were more 
strongly associated in a few other regions and with CSF measures. 
Thus ADNI-EF appears to be a useful composite measure of EF in 
MCI, as good as or better than any of its component parts.6  

Not surprisingly, given the pattern of early cognitive deficits 
reported in the literature favouring executive dysfunction over 
memory, the ADNI-MEM composite did not fare as well, performing 
only slightly better at detecting change than total RAVLT recall 
scores. However, ADNI-MEM did do as well as or better than its 
component scores at predicting conversion from MCI to AD, and 
was associated with all selected imaging parameters. As noted by 
several researchers, MCI subjects who exhibited the characteristic 
AD CSF signature of high tau and low beta amyloid in this study 
also exhibited a more rapid decline than did those without such 
a CSF signature, and although all of the component cognitive 
measures suggested faster rates of decline among subjects with 
the CSF signature, the difference was largest for the ADNI-MEM 
composite.7

Constructing Novel Cognitive Composites 
As many existing clinical trials of MCI, prodromal AD and mild AD 
utilise a large and varied number of neuropsychological tests with 
innumerable associated variables, it is virtually impossible for drug 
developers to choose a single test or test item most likely to show 
changes associated with treatment. Of course, selecting multiple 
measures welcomes criticism related to multiplicity and inflating 
Type 1 error, or rejecting a true null (also known as a false positive 
error). However, one crucial advantage of utilising composites is 
that it helps to control for Type I error, given the large number of 
neuropsychological tests and associated outcome measures.

An exploratory factor analysis can be utilised to uncover 
the underlying structure of a relatively large set of variables and 
allow the researcher to select which test variables should enter 
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into a composite in a totally objective fashion. This differs from a 
confirmatory factor analysis which is used to verify the de facto 
structure of a set of observed variables created by more subjective 
means such as expert opinion. Either of these will help to reduce 
data efficiently, but only exploratory efforts will fully allow the 
data to be unconfined. Importantly, before conducting any factor 
analyses it is imperative that all of the raw data be transformed to 
a common metric based on normative data. This does not require 
the use of normal healthy cohorts to be part of the study but does 
demand access to normative data. Unfortunately, for some novel 
cognitive measures this data may be lacking. 

 
Transforming data into a common metric based on standard 

scores such as Z scores helps to ensure that the psychometric 
properties of the various components that comprise the composite 
have similar psychometric properties, keeping in mind that the 
goal is to include measures that are highly related to one another, 
based on the test properties influencing reliability and on true score 
variance. Chapman and Chapman8 suggest that true score variance 
is also influenced by other test parameters, such as the item difficulty 
and the number of items which can vary greatly across component 
tests. For example, important differences in difficulty levels have 
long been noted between versions of RAVLT, with one version 
being systematically more difficult than others. Failing to account 
for differences in things like difficulty level (probably caused in this 
specific case by differences in word frequency, imagery, number 
of syllables and serial position of certain words in the list) could 
result in a misinterpretation of results when standard scores are 
used without knowledge of the test’s discriminatory power.2 Even 
though component tests may be similar in content and length, 
alternate versions of these tests are only considered equivalent if 
they have the similar means, variances and discriminatory power. 
Additionally, alternate forms of cognitive tests are required in 
longitudinal settings in order to help reduce practice effects. Even 
if the alternate forms are psychometrically equivalent, practice 
effects can still be attributable to the general testing factors that 
arise from repeated exposure to the same type of task and not 
just the specific content of the tests. There are several methods 
for equating alternate forms of tests that do not have similar 
psychometric properties. One method referred to as equipercentile 
equating is accomplished by identifying the subject’s scores on two 
measures with the same percentile rank and transforming the score 
on a new test to the corresponding score on the reference with the 
same percentile rank.9

 
In order to calculate these Z transformed standard scores and 

put outcomes in a common metric, the normative mean (which 
can be taken from prior observations or from published data) is 
simply subtracted from each subject’s component test score and this 
difference is divided by the standard deviation for the appropriate 
normative sample which sometimes varies by age and education. 
These Z scores can then be entered into principal components or 
exploratory factor analysis, followed by varimax rotation, in order 
to yield orthogonal or independent factors with an eigenvalue 
greater than one. The eigenvalue for a given factor measures the 
variance in all the variables which is accounted for by that factor. 
These factors can then be employed as unit weighted cognitive 
composites labelled to reflect various cognitive domains such 
as memory, executive function or motor speed, which typically 
comprise individual test items with factor weights above at least 
0.63 (very good) or 0.71 (excellent) being included based on sample 
size. Each factor would be considered a cognitive composite.  

Assessing the Reliability of Cognitive Composites 
As a general rule, a factor/composite would be seen as reliable if it 

has four or more loadings of at least 0.6, regardless of sample size. 
The top three to five factors/composites are typically presented in 
the order in which they were generated from the factor analysis, 
with those with the highest factor loadings presented first.  
Each factor/composite can be labelled based on its constituent parts 
by the researcher, provided a single label can capture the loadings 
appropriately. Of note, there will likely be numerous individual 
neuropsychological measures that are included in the original 
evaluation but are not used for calculating factor/composites 
as they did not load on any of the factors with a high enough  
factor loading. This does not preclude them from independent 
analyses.
 

It is also important to determine how well the composite 
performs and specifically how closely related the individual test 
items in a cognitive composite are to each other, or how well these 
reflect a unitary construct. This is akin to a reverse engineering of 
the factor analysis. To do this, a simple coefficient alpha (Cronbach’s 
alpha10) can be used to provide a measure of the internal consistency 
assessing the reliability of the composite, with "higher" values 
implying good internal consistency but not unidimensionality. 
Obviously other tools that indicate the fit of the model include 
the confirmatory fit index (CFI), the Tucker Lewis Index (TLI) 
and the root mean squared error of approximation (RMSEA) as 
noted earlier.6,7 Once the composite is found to be reliable and 
valid, future studies can be conducted using fewer measures on 
similar patient samples, greatly decreasing subject and site burden 
without sacrificing power. More importantly, a grand initiative 
such as MATRICS, requiring years and hundreds of patients to 
construct these composites is not necessary, as reliable composite 
construction is well within the scope of a Phase II study in terms of 
time, number of patients and cost.

Analysing Treatment Effects on Cognitive Composites 
For most researchers, simply constructing the cognitive composite 
is not enough and there is a need to compare these composites 
in a rigorous manner in order to draw conclusions not just about 
how well composites characterise the cognitive performance 
of patients but how these are differentially affected by drug 
treatment. In order to assess this, the Z scores corresponding 
to each individual cognitive measure that were included in the 
formation of the factor/composite can simply be summated, 
averaged and compared statistically across factor/composites. 
An average of all of the domains would reflect a global summary  
score.

This Z transformed data for each cognitive composite can be 
analysed in a manner similar to that for non-transformed data 
through the use of multivariate statistics. Importantly, this type of 
analysis permits a shape or profile analysis that can help determine 
if treatment affects one cognitive composite (e.g., executive function) 
to a greater degree than any or all of the others. If there is no 
difference across cognitive composites, there would be no difference 
from zero (corresponding to the mean of the normative data) and 
this would be represented by a flat line across composite measures. 
However, if a non-flat line is apparent, a significant within-subject 
profile shape can be tested for via standard MANOVA or MMRM 
techniques that detect significant differences between drug and 
placebo groups for all cognitive composites at baseline and over 
time. A significant profile shape by treatment group interaction 
could then be decomposed using univariate ANOVA techniques 
and Bonferroni corrected t-tests. If desired measure of premorbid 
intellectual functioning can be used as a covariate to control for 
general intelligence, which has been shown to correlate highly with 
performance on almost all cognitive measures.  
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Revealing a treatment by profile shape interaction would 
represent an achievement which could not be realised when 
examining a sole composite. The power of the shape analysis stems 
from the fact that the chosen cognitive composite will benefit 
differentially from treatment (whether improving, showing a more 
gradual decline over time or even a worsening for drugs associated 
with cognitive dysfunction). Ensuring that the analysis contains 
control composites reflecting premorbid intellectual function, 
language or motor function which should not be associated 
with practice or treatment-related changes lends validity to the 
composite of interest. In order to assess the potential contribution 
of practice effects on change scores (from baseline to follow-up), a 
series of univariate analyses can be conducted for each cognitive 
composite, keeping in mind that in early Alzheimer’s patient 
samples, some drug treatments may facilitate a practice effect that 
may be neutral in the placebo group which would not benefit from 
practice.  
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